If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2.7t^2+40t-7.5=0
a = -2.7; b = 40; c = -7.5;
Δ = b2-4ac
Δ = 402-4·(-2.7)·(-7.5)
Δ = 1519
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1519}=\sqrt{49*31}=\sqrt{49}*\sqrt{31}=7\sqrt{31}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-7\sqrt{31}}{2*-2.7}=\frac{-40-7\sqrt{31}}{-5.4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+7\sqrt{31}}{2*-2.7}=\frac{-40+7\sqrt{31}}{-5.4} $
| ×=5+4a | | 0=-2.7t^2+50t+6.5 | | 8u-4u=32 | | 5(x-11)=4x+15 | | y^2-10y-48=0 | | 3x=8x-90 | | 2y^2-10y+48=0 | | 2x=3(x-4)=2x(x-3) | | -2.7t^2+50t-11.5=0 | | C+1=2c-9 | | 1/2m+1/3m=m-3 | | 3(2x=1)-2(x-2)=5 | | 3x+5-8=96 | | 0=-2.7t^2+60t+6.5 | | -2.7t^2+30t-11.5=0 | | 20y+5y^2+4+y=0 | | 20y+5y^2+4+y20y=0 | | 2/5(x-1/3)=2/3(1/2-2x) | | 11x+28=12x-4+15x | | 108-u=245 | | 9x-32=2x+3 | | 4x-6=7x-2 | | 1.1x=68974.32 | | 7(y-8)=3y-44 | | 6x+7=9x-3 | | 1000=500*(1.0475^x) | | 4n+21+3n+19=180 | | 5a+6-8a=12 | | 6x+24=5x^2 | | 50-3x=7x+60 | | –2(2x+1)=1 | | 10(y-2)=-2(2+3) |